Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems
نویسنده
چکیده
Addressing dynamic optimization problems has been a challenging task for the genetic algorithm community. Over the years, several approaches have been developed into genetic algorithms to enhance their performance in dynamic environments. One major approach is to maintain the diversity of the population, e.g., via random immigrants. This paper proposes an elitism-based immigrants scheme for genetic algorithms in dynamic environments. In the scheme, the elite from previous generation is used as the base to create immigrants via mutation to replace the worst individuals in the current population. This way, the introduced immigrants are more adapted to the changing environment. This paper also proposes a hybrid scheme that combines the elitismbased immigrants scheme with traditional random immigrants scheme to deal with significant changes. The experimental results show that the proposed elitism-based and hybrid immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
منابع مشابه
Ant Colony Optimization with Immigrants Schemes in Dynamic Environments
In recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, e...
متن کاملGenetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new enviro...
متن کاملA Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interes...
متن کاملAnt Colony Optimization with Immigrants Schemes for the Dynamic Vehicle Routing Problem
Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity and transfer knowledge. Several approaches have been integrated with ACO to improve its performance for DOPs. Among these integrations, the ACO algorithm with immigrants schemes has shown good results on the dynamic travelling salesman pro...
متن کاملParticipative Biogeography-Based Optimization
Biogeography-Based Optimization (BBO) has recently gained interest of researchers due to its simplicity in implementation, efficiency and existence of very few parameters. The BBO algorithm is a new type of optimization technique based on biogeography concept. This population-based algorithm uses the idea of the migration strategy of animals or other species for solving optimization problems. t...
متن کامل